Process & Instrumentation Diagram (P&ID)

Purpose
1. To show the instruments or control devices attached to the process.
2. To show the control system architecture associated with the process.

How it is done?
Standard symbols and notations representing instruments or control devices are placed to the pipings and vessels. Standard symbols and notations are available from ISA-5.1(1984) standard.

Methodology?

Process piping and sub-piping

A thick straight line represent main process piping

A thin straight line represent process sub-piping either to instruments or by-pass process line.
Methodology?

Instruments / control devices:

- A circle representing locally mounted instrument.
- A circle with horizontal line representing control room panel mounted instrument.
- A circle with horizontal line inside a square representing its function in DCS.

© Abdul Aziz Ishak, Universiti Teknologi MARA Malaysia (2009)
Function devices

- √ Square root extractor
- ∫ Integrator
- < Low selector
- I/P Current to Pneumatic Converter

Signals

- Electrical signal (low current or low voltage e.g. 4-20 mA). Straight dashed line
- Pneumatic signal e.g. 3-15 psig or 0-60 psig. Straight line with //
Naming rule

Instruments or devices are noted by 2 to 4 letters.

1st 2nd 3rd 4th

Measurement Control device Device/ Condition Condition

Common measurement:
P = Pressure
T = Temperature
L = Level
F = Flow

Common control devices:
I = Indicator
C = Controller
R = Recorder
T = Transmitter
A = Alarm
S = Switch
G = Gauge

Common condition:
H = High
L = Low

Examples

See Smith & Corripio (2006) as in Appendix A, Table A-1

Level transmitter no. 120 installed to vessel
Level transmitter no. 120 panel mounted, control room.
Level controller no. 120 in DCS, control room.

© Abdul Aziz Ishak, Universiti Teknologi MARA Malaysia (2009)
Examples

thin process line

thick process line

© Abdul Aziz Ishak, Universiti Teknologi MARA Malaysia (2009)
Process control loop

- Process
 - Sensor
 - Transmitter
 - Controller
 - Transducer
 - Control valve

FLOW

© Abdul Aziz Ishak, Universiti Teknologi MARA Malaysia (2009)
Final control elements

Control valves

Manual valve

Manual valve

Solenoid valve

Not darkened → Always open

Darkened → Always closed

© Abdul Aziz Ishak, Universiti Teknologi MARA Malaysia (2009)